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Die Chlorierung des [Al;;] -Clusters und der
stufenweise Abbau iiber [Al;] -, [Aly] - und
[Al,;] -Intermediate: eine Modellreaktion fiir die
Oxidation von Metallen ?**

Ralf Burgert, Hansgeorg Schnockel,* Matthias Olzmann
und Kit H. Bowen, Jr.

Leitet man Chlorgas iiber festes Aluminium bei Temperatu-
ren von mehr als 100°C, so bildet sich unter Normalbedin-
gungen gasformiges AICL: Al + °4Cl, — AlCly,,. Die
experimentell  bestimmte Reaktionsenthalpie  betrégt
—585kImol . Um diesen fundamentalen Prozess des
Auflosens eines Metalls in einer oxidierenden Atmosphire
(Analoges gilt fiir den Loseprozess eines Metalls in einer
wissrigen Sdure) besser zu verstehen, miissen Zwischenpro-
dukte fiir die einzelnen Reaktionsschritte an der Metall-
oberflidche identifiziert werden. Fiir die dafiir notwendigen
Untersuchungen bietet sich die Verwendung ,,nackter” Alu-
miniumcluster (Al,) als definierter molekularer Modellver-
bindungen an, da sich so Probleme durch die Oberfldchen-
beschaffenheit von Metallen und die damit verbundenen
unterschiedlichen lokalen Reaktivititen umgehen lassen.
Besonders geeignet hierzu ist der experimentell leicht zu-
gingliche [Al;;] -Cluster, dessen Reaktionen mit Iod und
Todwasserstoff bereits Aufsehen erregt haben.>?!

Hier berichten wir iiber Untersuchungen mittels Fourier-
Transform-Ionencyclotronresonanz(FT-ICR)-Massenspektro-
metrie an isolierten [Al;;] -Clustern und ihrer Reaktionen
mit Chlor. Dabei war es erstmals moglich, Zwischenprodukte
bei einer solchen Reaktion zeitaufgeldst nachzuweisen und
damit Elementarschritte dieser Oxidationsprozesse zu iden-
tifizieren. Basierend auf den experimentellen Ergebnissen
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und begleitenden quantenchemischen Rechnungen wird ein
plausibler Reaktionsverlauf fiir den schrittweisen Clusterab-
bau vorgeschlagen. Diese Elementarschritte fiir das ,,Auflo-
sen“ nackter Metallatomcluster in der Gasphase in Gegen-
wart von Chlor liefern zum ersten Mal topologische und en-
ergetische Argumente fiir das Verstdndnis analoger Oxida-
tionsprozesse beim Volumenmetall.

Nach Laserdesorptionsionisierung (LDI) von LiAIH,
kann massenspektrometrisch ein Gemisch von Al, -Cluster-
anionen nachgewiesen werden, das von einem intensiven
Signal bei m/z 350.8 ([Al;3]") dominiert wird. Die Stabilitét
dieser ikosaedrischen [Al;;] -Ionen mit ihren 40 Valenzelek-
tronen (Jellium-Modell) ist mehrfach diskutiert worden.”! Im
vorgestellten Experiment werden [Al;]"-Ionen in der Pen-
ning-Falle eines FT-ICR-Massenspektrometers isoliert
(stored wave inverse Fourier transformation, SWIFT) und
anschlieBend mit Argon als StoBgas abgekiihlt.> Setzt man
diese [Al;;] -Ionen einer Chloratmosphire bei ca. 10~ mbar
aus, so beobachtet man nach einigen Sekunden das Auftreten
neuer Signale, die im Wesentlichen [Al;]™-, [Aly]™- und
[Al;]"-Tonen zugeordnet werden kénnen (Abbildung 1). Der
[Al5]-Cluster wird also schrittweise iiber die Reaktionsse-
quenz (1) zu kleineren Aluminiumclustern abgebaut.
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Abbildung 2 zeigt die ablaufenden Reaktionen, wie sie
sich aus den Experimenten und quantenchemischen Rech-
nungen ergeben: Im ersten Schritt findet die Oxidation an der
[Al5] -Clusteroberfliche unter Bildung eines [Al;CL] -
Zwischenproduktes statt, d.h., bei der Reaktion eines Clus-
ters mit Chlor werden zwei Al-Cl-Bindungen zu Alumi-
niumatomen des ikosaedrischen Al;,-Geriistes gekniipft und
die CI-Cl-Bindung wird gebrochen. Die bei dieser Chlorie-
rung freiwerdende Energie (nach Dichtefunktionalrechnun-
gen etwa —450 kImol'"1621)) fijhrt zu Schwingungs- und
Rotationsanregung des Clusters (Symbol *), die bei Driicken
um 10~® mbar jedoch nicht durch StéBe mit anderen Teilchen
abgegeben werden kann [GL. (2a)]. Dies fiihrt im zweiten

[Al;3] " + CL — [Al;;CL]
ARH., —450 kJ mol ™!

0K =

(2a)

Schritt zur Fragmentierung (Abspaltung von AICIl) des
[Al;;CL]"-Clusters [Gl. (2b)]. Die Weiterreaktion zu

[AL;3CLy]" ) — [ALLCI" () + AIC, b
AgH g = +195kJ mol ™! (20)
[Al,CI]™" unter Abspaltung von AICI fiihrt fiir [Al;;CL]~" zu
einer mittleren Lebensdauer im Nanosekundenbereich, wie
mithilfe der Phasenraumtheorie (PST)®! errechnet wurde.
Wegen dieser kurzen Lebensdauer wird [Al;;CL]™ im Expe-
riment nicht beobachtet. Im dritten Schritt spaltet [Al,,Cl]™
erneut AICI ab und bildet [Al;]” [Gl. (2¢)]. Fiir diesen Re-

[ALCI]” ) — [Alu] ") + AICl,
ArHyy) = 4203 kJ mol ™
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Abbildung 1. Typisches FT-ICR-Massenspektrum nach Laserdesorptionsionisation: [Al;5]~ wird zum Zeitpunkt t=0 isoliert und einer Chloratmo-
sphire (bei 2x 1078 mbar) ausgesetzt. Gezeigt ist die Abnahme des [Al,;]-Signals zugunsten der Signale von [Al},]7, [Al;]” und [Al;]". Bei t=1s
ist [Al,,Cl]” in kleinen Konzentrationen nachzuweisen (a, f). Jedes Einzelspektrum wurde normiert. Aus Ubersichtsgriinden sind die Cl™-Signale

hier nicht gezeigt; fiir erganzende Massenspektren siehe Hintergrundinformationen.
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Abbildung 2. Energiediagramm des Clusterabbaus; die Energiewerte sind in [k] mol™'] angegeben. Im
ersten Schritt erfolgt die Reaktion mit Chlor an der [Al ;] -Clusteroberfliche unter Bildung eines
[Al;3Cl,]"-Clusters, der im Experiment wegen der kurzen Lebensdauer nicht beobachtet werden kann.
Dies fiithrt in einem zweiten Schritt zur sofortigen Fragmentierung (Abspaltung von AICI) und Bildung
von [Al,Cl]”. Nach weiterer AlICI-Abspaltung resultiert [Al;;]”. In analoger Weise erfolgt der Abbau

von [Al;]” und [Alg]".

aktionspfad liegt die geschitzte Lebensdauer von [Al;,Cl]™
im Bereich einiger Zehntelsekunden. Dieses Anion wird in
unseren Experimenten nur in kleinen Mengen nachgewiesen
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(sieche Abbildung 1). Anhand eines
Doppelresonanzexperiments
konnte jedoch gezeigt werden, dass
diese Zwischenstufe in der Tat
durchlaufen wird: Entfernt man
kontinuierlich [Al;,Cl]” durch RF-
Anregung, so wird kaum noch
[Al;;]” gebildet, d.h., die Reakti-
onsfolge wird dadurch unterbro-
chen.”™!! Die Langevin-Geschwin-
digkeitskonstante k; wurde fiir alle
Ionenmolekiilreaktionen im ver-
wendeten Druckbereich zu k =
0.09s7! ermittelt.""'? Somit trifft
ein [Al,]"-Clustermolekiil im zeit-
lichen Mittel etwa alle 10 s auf ein
Chlormolekiil und reagiert nach
Abschitzung der Lebensdauern
innerhalb von 0.1s zu einem
[Al,_,] -Cluster. Ein stoBinduzier-
ter Zerfall von [Al;5]” kann ausge-
schlossen werden, da entsprechen-
de Experimente mit Argon als
StoBgas (in Abwesenheit von
Chlor) keine der oben beschriebe-
nen Fragmentierungen nach sich
ziehen.!"™

Insgesamt ergibt sich fiir den
Abbau von [Al;;]” zu [Aly]” durch

Reaktion mit Chlor eine Standardreaktionsenthalpie von
—52 kJmol™". Die entsprechenden Reaktionen der [Al;] -
und [Aly]-Cluster verlaufen prinzipiell analog, sind aber mit
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—192 und —279 kJmol™' deutlich exothermer. Simtliche
Energiebilanzen sind in Abbildung 2 zusammengefasst.

Aufler den bisher erwihnten Reaktionsprodukten beob-
achtet man im Experiment von Beginn an das Auftreten von
Cl™. Besonders bei langen Reaktionszeiten (mehr als 60 s bei
einem Chlordruck von 10~® mbar) detektiert man CI- als al-
leiniges Produkt. Bestimmt man die Intensitdten der Signale
von [Al;]7, [Aly]7, [Al]™, [Al;]” und CI™ (und damit die
Konzentrationen aller Reaktionsteilnehmer) zu unterschied-
lichen Zeitpunkten, so lassen sich Reaktionsgeschwindigkei-
ten fiir die Teilschritte in Gleichung (1) angeben. Die genaue
Quantifizierung des Abbaus von [Al;]” einschlieBlich der
Folge- und Nebenreaktionen erweist sich als sehr komplex
und soll deshalb in einer gesonderten Publikation beschrie-
ben werden." Wir wollen uns hier auf eine qualitative Be-
schreibung beschrinken: Im Wesentlichen reagieren [Al,]™-
Cluster mit Chlor unter zweimaliger Abspaltung von AlCl zu
[AL,_,]", also zu einem um zwei Aluminiumatome drmeren
Cluster. In einem konkurrierenden Reaktionspfad werden die
[AL,] -Cluster entladen (d.h. oxidiert), und es wird CI~ ge-
bildet. Zum einen gibt es also die Reaktionsfolge, bei der die
[AL] -Cluster zu immer kleineren FEinheiten abgebaut
werden, und zum anderen finden parallel dazu in unter-
schiedlichem AusmaB Entladungsreaktionen der [Al,]™-
Cluster wegen ihrer unterschiedlichen Elektronenaffinitaten
unter Bildung von CI- statt.”

Der hier vorgestellte Ablauf fiir die Reaktionen von
[Al,]"-Clustern mit Chlor unter Abspaltung von AICI als
Hauptprodukt ist ein plausibles Modell fiir die entsprechende
Reaktion von Al-Volumenmetall mit Chlor. Diese Schluss-
folgerung ist in Einklang mit anderen Experimenten: Sowohl
bei der Chlorierung von Aluminium in Matrixisolationsver-
suchen als auch bei Versuchen im SynthesemafBstab entsteht
bei niedrigen Chlordriicken ausschlieBlich AICL™! Die hier
aus massenspektrometrischen Untersuchungen an [Al,]™-
Clustern abgeleiteten Reaktionspfade liefern damit ein
plausibles Modell fiir Primérschritte bei der Oxidation von
festem Aluminium, wie im Folgenden anhand eines Gedan-
kenexperiments mit topologischen und thermodynamischen
Argumenten erldutert werden soll.

Da die Topologie des [Al;]"-Clusters mit einem zwolffach
koordinierten zentralen Aluminiumatom dhnlich derjenigen
in der dichtesten Packung der Aluminiumatome im Volu-
menmetall ist, verhilt sich dieser Cluster auch in energeti-
scher Hinsicht (nicht unerwartet) dhnlich wie festes Alumi-
nium: Entfernt man aus der dichtesten Kugelpackung von
festem Aluminium zwei Al-Atome [Gl. (3a)], so erfordert

2Al, —2Al,
» (3a)
AxHyy = +(654 = 8) kJ mol

dies 654 kImol™', d.h. die zweifache Sublimationsenthalpie.
Nach Dichtefunktionalrechnungen erfordern die analogen
Reaktionen der anionischen und neutralen Al;;-Cluster
[GL. (3b) und (3¢)] 698 bzw. 638 kJmol'. Obwohl der Un-

[A113]7(g) - [A111]7(g) +2Al

3b
AgHy g, = 4698 kJ mol ™! (3b)
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Al — Al +2 Al

_ (3¢c)
AgH ) = 638 kJ mol !
terschied dieser Enthalpiewerte (60 kJ mol™") im Hinblick auf
die iiblichen Fehlergrenzen bei Dichtefunktionalrechnungen
(ca. 10 %) nicht iiberrascht, wird aus dem signifikant groBeren
Enthalpiewert fiir die Fragmentierung des [Al,s] -Clusters
auch dessen besondere Stabilitdt deutlich.

Diese Ahnlichkeiten zwischen dem Volumenmetall und
den Al;;-Clustern bei der Entfernung von jeweils zwei Al-
Atomen [Gl. (3a—c)] spiegeln sich konsequenterweise auch in
den entsprechenden Chlorierungsreaktionen [Gl. (4a—c)]

[Alis]" () + Clo — [Aln] ") + 2 AICL,

4
ArHyy, = ~52 kI mol™! (4a)
2 Al + Cl, — 2AICK,
. (4b)
ArHy = —(103 £ 12) ki mol "
Al + Cly — Al +2AICk,
(4c)

ArH;, ~113kJmol™!

0K) =
wider. Sowohl der neutrale als auch der hier untersuchte
anionische [Al;]"-Cluster konnen somit als geeignete mole-
kulare Modellverbindungen fiir die Untersuchung von Pri-
mirreaktionen auf der Oberfliche von festem Aluminium
angesehen werden.

Wegen des groBien Chloriiberschusses wird das in
den beschriebenen Experimenten gebildete AICI sofort
stark exotherm zu AICl; als Endprodukt der Chlorierung
weiterreagieren (AlCl, + Cl, — AlCly,, ARH =
—534 kImol ). Somit liegt es nahe, dass auch die Chlorie-
rung des Aluminiummetalls priméir iiber die Addition von
Chlor und Abspaltung von AICI verlduft und dass erst an-
schlieBend das AICI zu AICl; unter Freisetzung einer etwa
zehnfach groBeren Reaktionswirme (—534 kJmol™!) weiter-
reagiert. Folglich zeigen auch die Gesamtreaktionen
[GL. (5a—)] mit AICl; als Endprodukt den Modellcharakter
des Aly5-Clusters fiir das Volumenmetall auf molekularer
Ebene.

[Al;3]7 o +3ClL, — [Aly] ") + 2 AlCly,

S5a
ArH 5, = —1084 kI mol ' (5a)
2Aly) +3Cl, — 2 AICLy,

5b
AH ) = —(1166 + 6) kI mol ™ ! (5b)
A113(g) +3Cl, — Aln(g) + 2A1C13(g)

(5¢)

AxH}yy, = —1145 kI mol !

Neben der Abbaureaktion des [Al;]"-Clusters zu [Aly;]~
und zwei AICI dirften auch die umgekehrten Schritte
[Bruttoreaktion Gl. (6)] z.B. fiir das Versténdnis der Bildung

3 AICI + [Al,]” — [Als]” + AICL, (6)
metalloider Cluster im Synthesemafstab!™ von Bedeutung
sein. So kann Gleichung (6) als vereinfachtes Modell fiir

einen Teilschritt bei der Disproportionierung von z.B. AICI-
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Losungen (3AICI — 2Al+ AICl;) angesehen werden, bei
denen sich als Intermediate metalloide Al,(AlIR),,-Cluster
und schlieBlich metallisches Aluminium bilden. Diese Be-
trachtung (im Sinne einer Retrosynthese, also einer Umkehr
der in Abbildung 2 beschriebenen Reaktionsfolge) ist plau-
sibel, denn im Unterschied zu den hier vorgestellten mas-
senspektrometrischen Gasphasenexperimenten ist die AlCI-
Konzentration in den von uns préiparativ hergestellten AICI-
Losungen hoch!™ — das heiBt, hier konnen tatsichlich Teil-
schritte analog zu Gleichung (6) ablaufen, da diese Reaktion
mit ca. —467 kImol™' exotherm ist.

Experimentelles

Die hier vorgestellten Experimente wurden mithilfe eines ULTIMA-
FT-ICR-Massenspektrometers (Ionspec) durchgefiihrt, das iiber eine
MALDI-Quelle (Ionspec, versehen mit einem Stickstofflaser, Spectra
Physics, 4 =337.1 nm) verfiigt und mit einem 7.0-T-Magneten aus-
gestattet ist. Ausgewihlte Tonen wurden isoliert (SWIFT) und mit
Argon als StoBgas abgekiihlt.’! Fiir die Reaktion wurde Chlor mit-
hilfe eines Leckventils in die Messzelle eingelassen. Dadurch wurde
der Druck von typischerweise 107" auf 10~® mbar erhoht. Die Re-
aktionszeit wurde zwischen 2 und 70 s variiert.

Die Dichtefunktionalrechnungen wurden mit TURBOMOLE!!
unter Verwendung des Becke-Perdew-86-Funktionals (BP 86)!'"'!
durchgefiihrt. Coulomb-Wechselwirkungen wurden innerhalb der
sresolution of the identity“(RI)-Niherung!”?" beriicksichtigt. Das
Raster fiir die numerische Integration der Austausch- und Korrela-
tionsterme war von mittlerer Feinheit (m3%"), die Basis war vom
,split valence plus polarization“(SVP)-Typ.?!! Um zu iiberpriifen, ob
die gewidhlten Rechenverfahren den hier gestellten Fragestellungen
geniigen, wurde folgende Reaktion verglichen: AlCl, + Cl, —
AlICly,,. Die berechnete Reaktionsenthalpie wurde zu AgH' ;)=
—516 kJmol™! bestimmt. Die experimentell bestimmte Reaktions-
enthalpie liegt bei AgH’(y,)=—534+9KkJ mol~!. Diese Methoden
wurden bereits in einer Dichtefunktionalstudie zu Aluminiumclus-
tern verwendet.”” Die Abschitzung der Lebensdauern der Zwi-
schenstufen [Al;;ClL]™" und [Al,Cl]™" erfolgte nach der Phasen-
raumtheorie (PST).F!

Eingegangen am 19. August 2005
Online veroffentlicht am 30. Januar 2006

Stichwérter: Aluminium - Chlor - Clusterverbindungen -
Dichtefunktionalrechnungen - Massenspektrometrie

[1] ,,NIST-JANAF Thermochemical Tables, 4th ed.“: M. W. Chase,
J. Phys. Chem. Ref. Data Monogr. 1998, 9.

[2] D. E.Bergeron, A. W. Castleman, Jr., T. Morisato, S. N. Khanna,
J. Chem. Phys. 2004, 121, 10456.

[3] D. E.Bergeron, A. W. Castleman, Jr., T. Morisato, S. N. Khanna,
Science 2004, 304, 84.

[4] W.D. Knight, K. Clemenger, W. A. De Heer, W. A. Saunders,
M. Y. Chou, M. L. Cohen, Phys. Rev. Lett. 1984, 52, 2141.

[5] X. G.Gong,D. Y. Sun, X.-Q. Wang, Phys. Rev. B 2000, 62,15413.

[6] A.G. Marshall, T. C. L. Wang, T. L. Ricca, J. Am. Chem. Soc.
1985, 107, 7893.

[7] Samtliche Energiebilanzen, Strukturparameter der Ausgangs-
verbindungen und der Zwischenprodukte sowie die wichtigsten
Elektronenaffinitdten sind in den Hintergrundinformationen zu
finden.

[8] T. Baer, W. Hase, Unimolecular Reaction Dynamics, Oxford
University Press, New York, 1996.

[9] L.R. Anders, J. L. Beauchamp, R.C. Dunbar, J. D. Balde-
schwieler, J. Chem. Phys. 1966, 45, 1062.

[10] M. B. Comisarow, V. Grassi, G. Parisod, Chem. Phys. Lett. 1978,
57, 413-416.

[11] P. M. Langevin, Ann. Chim. Phys. 1905, 5, 245.

[12] J. L. Steinfeld, J. S. Francisco, W. L. Hase, Chemical Kinetics and
Dynamics, Prentice Hall, Englewood Cliffs, 1989.

[13] Erzwingt man eine stoBinduzierte Fragmentierung durch zu-
sitzliche RF-Anregung (,sustained off-resonance irradiation
collision-activated dissociation“(SORI-CAD)-Experimente), so
ergibt sich ein ginzlich anderes Fragmentierungsmuster.

[14] M. Olzmann, R. Burgert, H. Schnockel, unveroffentlichte Er-
gebnisse.

[15] C. Dohmeier, D. Loos, H. Schnickel, Angew. Chem. 1996, 108,
141; Angew. Chem. Int. Ed. Engl. 1996, 35, 129; A. Schnepf, H.
Schnockel, Angew. Chem. 2002, 114, 3682; Angew. Chem. Int.
Ed. 2002, 41, 3533;H. Schnockel, Dalton Trans. 2005, 3131.

[16] O. Treutler, R. Ahlrichs, J. Chem. Phys. 1995, 102, 346.

[17] A.D. Becke, Phys. Rev. A 1988, 38, 3098.

[18] J. P. Perdew, Phys. Rev. B 1986, 8822.

[19] K. Eichkorn, O. Treutler, H. Oehm, M. Haeser, R. Ahlrichs,
Chem. Phys. Lett. 1995, 240, 283.

[20] K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem.
Acc. 1997, 97, 119.

[21] A.Schaefer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571.

[22] R. Ahlrichs, S. D. Elliott, Phys. Chem. Chem. Phys. 1999, 1, 13.

www.angewandte.de

© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Angew. Chem. 2006, 118, 1505-1508


http://www.angewandte.de

